http://www.javaworld.com/javaworld/jw-10-2004/jw-1004-soa_p.html

Advertisement: Support JavaWorld, click here!

Join the Java Community Processs™ program

mworld

to vote on Executive Committee members and influence Java t

Fositng Twsdden™ Join the JCP*™ program today.
Fa A
FEATURED NEWS & W ABOUT
October 2004 HOME rytorials COMUMNS - peviews FORUM pesources aw

Design a simple service-oriented J2EE
application framework

Leverage Struts, Spring, Hibernate, and Axis

Summary

Often, a J2EE Web application framework—Struts, for example—doesn't address the
Web-tier object references between action/servlet and other layers, such as a plain
old Java object (POJO) business manager, Enterprise JavaBeans (EJB), Web services,
and a data access object (DAO), or between a DAO and JDBC (Java Database
Connectivity) stored procedures. Thus, Java developers end up with messy code in
the Web tier action/servlet. This article describes in detail the steps for developing a
custom framework that addresses those issues. (3,000 words,; October 4, 2004)

By Fangjian Wu

oday, developers are inundated with open source frameworks that help with J2EE

programming: Struts, Spring, Hibernate, Tiles, Avalon, WebWorks, Tapestry, or Oracle ADF,
to name a few. Many developers find that these frameworks are not the panacea to their
problems. Just because they are open source doesn't mean they are easy to change and
improve. When a framework falls short in a key area, addresses only a specific domain, or is just
bloated and too expensive, you might need to build your own framework on top of it. Building a
framework like Struts is a nontrivial task. But incrementally developing a framework that
leverages Struts and other frameworks doesn't have to be.

In this article, I show you how to develop X18p (Xiangnong 18 Palm, named for a legendary
powerful kung fu fighter), a sample framework that addresses two common issues ignored by
most J2EE frameworks: tight coupling and bloated DAO (data access object) code. As you'll see
later, X18p leverages Struts, Spring, Axis, Hibernate, and other frameworks at various layers.
Hopefully, with similar steps, you can roll your own framework with ease and grow it from
project to project.

The approach I take in developing this framework uses concepts from IBM's Rational Unified
Process (RUP). I follow these steps:

Set simple goals initially

Analyze the existing J2EE application architecture and identify the issues
Compare alternative frameworks and select the one that is simplest to build with
Develop code incrementally and refactor often

Meet with framework's end-user and collect feedback regularly

Test, test, test

CUAWN —

1of 21

http://www.javaworld.com/javaworld/jw-10-2004/jw-1004-soa_p.html

Step 1. Set simple goals

It is tempting to set ambitious goals and implement a cutting-edge framework that solves all
problems. If you have sufficient resources, that is not a bad idea. Generally, developing a
framework upfront for your project is considered overhead that fails to provide tangible business
value. Starting smaller helps you lower the unforeseen risks, enjoy less development time, lower
the learning curve, and get project stakeholders' buy-in. For X18p, I set only two goals based on
my past encounters with J2EE code:

1. Reduce J2EE action code coupling
2. Reduce code repetition at J2EE DAO layer

Overall, I want to provide better quality code and reduce the total cost of development and
maintenance by increasing my productivity. With that, we go through two iterations of Steps 2
through 6 to meet those goals.

Reduce code coupling

Step 2. Analyze previous J2EE application architecture

If a J2EE application framework is in place, we first must see how it can be improved. Obviously,
starting from scratch doesn't make sense. For X18p, let's look at a typical J2EE Struts application
example, shown in Figure 1.

Figure 1. J2EE Struts application architecture. Click on thumbnail to view full-sized image.

Action Calls xxxManager, and xxxManager Calls xxxpros. In a typical J2EE design that incorporates
Struts, we have the following items:

HttpServlet O A Struts action Iayer that handles HttpRequest and HttpResponse
Business logic layer

Data access layer

Domain layer that maps to the domain entities

What's wrong with the above architecture? The answer: tight coupling. The architecture works
just fine if the logic in action is simple. But what if you need to access many EJB (Enterprise
JavaBeans) components? What if you need to access Web services from various sources? What if
you need to access JMX (Java Management Extensions)? Does Struts have a tool that helps you
look up those resources from the struts-config.xmi file? The answer is no. Struts is meant to be a
Web-tier-only framework. It is possible to code actionS as various clients and call the back end
via the Service Locator pattern. However, doing so will mix two different types of code in action's
execute () method.

The first type of code relates to the Web-tier uttprequest/uttpresponse. FOr instance, code retrieves

2 0of 21

http://www.javaworld.com/javaworld/jw-10-2004/jw-1004-soa_p.html

HTTP form data from actionForm OF HttpRequest. YOU also have code that sets data in an HTTP
request or HTTP session and forwards it to a JSP (JavaServer Pages) page to display.

The second code type, however, relates to the business tier. In action, you also invoke backend
code such as essobject, @ JMS (Java Message Service) topic, or even JDBC (Java Database
Connectivity) datasources and retrieve the result data from the JDBC datasources. You may use
the Service Locator pattern in action to help you do the lookup. It's also possible for action to
reference only a local POJO (plain old Java object) xxxmanager. Nevertheless, a backend object or
xxxManager' S Method-level sighatures are exposed to action.

That's how action works, right? The nature of action is a servlet that is supposed to care about

how to take data in from HTML and set data out to HTML with an HTTP request/session. It also
interfaces to the business-logic layer to get or update data from that layer, but in what form or
protocol, action could care less.

As you can imagine, when a Struts application grows, you could end up with tight references
between actions (Web tier) and business managers (business tier) (see the red lines and arrows
in Figure 1).

To solve this problem, we can consider the open frameworks in the market—let them inspire our
own thinking before we make an impact. Spring Framework comes on my radar screen.

Step 3. Compare alternative frameworks

The core of Spring Framework is a concept called seanractory, which is a good lookup factory
implementation. It differs from the Service Locator pattern in that it has an Inversion-of-Control
(IoC) feature previously called Injection Dependency. The idea is to get an object by calling your
ApplicationContext'S getBean () Method. This method looks up the Spring configuration file for
object definitions, creates the object, and returns a java.1lang.object Object. getsean() is good for
object lookups. It appears that only one object reference, appiicationcontext, must be referenced
in the action. However, that is not the case if we use it directly in the action, because we must
cast getBean ()'s return object type back to the EIJB/IJMX/IMS/Web service client. action still must
be aware of the backend object at the method level. Tight coupling still exists.

If we want to avoid an object-method-level reference, what else we can use? Naturally, service,
comes to mind. Service is a ubiquitous but neutral concept. Anything can be a service, not
necessarily just the so-called Web services. action can treat a stateless session bean's method as
a service as well. It can treat calling a JMS topic as consuming a service too. The way we design
to consume a service can be very generic.

With strategy formulated, danger spotted, and risk mitigated from the above analysis and
comparison, we can spur our creativity and add a thin service broker layer to demonstrate the
service-oriented concept.

Step 4. Develop and refactor
To implement the service-oriented concept thinking into code, we must consider the following:

® The service broker layer will be added between the Web tier and the business tier.

e Conceptually, an action calls a business service request only, which passes the request to a
service router. The service router knows how to hook up business service requests to
different service provider controllers or adapters by looking up a service mapping XML file,
X18p-config.xml.

e The service provider controller has specific knowledge of finding and invoking the
underlying business services. Here, business services could be anything from POJO, LDAP
(lightweight directory access protocol), EJB, JMX, COM, and Web services to COTS
(commercial off the shelf) product APIs. x1sp-config.xm1 Should supply sufficient data to help
the service provider controller get the job done.

3o0f21

http://www.javaworld.com/javaworld/jw-10-2004/jw-1004-soa_p.html

e Leverage Spring for X18p's internal object lookup and references.

e Build service provider controllers incrementally. As you will see, the more service provider
controllers implemented, the more integration power X18p has.

e Protect existing knowledge such as Struts, but keep eyes open for new things coming up.

Now, we compare the action code before and after applying the service-oriented X18p
framework:

Struts Action without X18p
public ActionForward execute(ActionMapping mapping, ActionForm form, HttpServletRequest
request, HttpServletResponse response)throws IOException, ServletException {
UserManager userManager = new UserManager();
String userIDRetured = userManager.addUser("John Smith")
b
Struts Action with X18p
public ActionForward execute(ActionMapping mapping, ActionForm form, HttpServletRequest
request, HttpServletResponse response)
throws IOException, ServletException {
ServiceRequest bsr = this.getApplicationContext().getBean("businessServiceRequest");
bsr.setServiceName("User Services");
bsr.setOperation("addUser");
bsr.addRequestInput("param1l1”, "addUser");
String userIDRetured = (String) bsr.service();
b

Spring supports lookups to the business service request and other objects, including POJO
managers, if any.

Figure 2 shows how the Spring configuration file, applicationcontext.xm1, supports the lookup of

businessServiceRequest and serviceRouter.

= HMICTYPE PUBLEC -//SPRTNG DD BEAMVEN® "hilp ./fsww, springframerseoric. org /it Spr ing-beans ™ >

Figure 2. Spring framework configuration. Click on thumbnail to view full-sized image.

In servicerequest.java, the service () method simply calls Spring to find the service router and
passes itself to the router:

4 of 21

http://www.javaworld.com/javaworld/jw-10-2004/jw-1004-soa_p.html

public Object service() {
return ((ServiceRouter) this.serviceContext.getBean("service router")).route(this);

¥

The service router in X18p routes user services to the business logic layer with x18p-config.xm1's
help. The key point is that the action code doesn't need to know where or how user services are
implemented. It only needs to be aware of the rules for consuming the service, such as pushing
the parameters in the correct order and casting the right return type.

Figure 3 shows the segment of x1sp-config.xm1 that provides the service mapping information,
which servicerouter will look up in X18p.

Figure 3. X18p service mapping configuration. Click on thumbnail to view full-sized image.

For user services, the service type is POJO. servicerouter Creates a POJO service provider
controller to handle the service request. This POJO's springObjectId IS userServiceManager. The
POJO service provider controller uses Spring to look up this POJO with springobjectd. Since
userServiceManager points to class type X18p.framework.UserPOJOManager, the UserPOJOManager class is
the application-specific logic code.

Examine servicerouter. java.
public Object route(ServiceRequest serviceRequest) throws Exception {
// /1. Read all the mapping from XML file or retrieve it from Factory
// Config config = xxxx;
// 2. Get service's type from config.
String businessServiceType =
Config.getBusinessServiceType(serviceRequest.getServiceName());
// 3. Select the corresponding Router/Handler/Controller to deal with it.
if (businessServiceType.equalsignoreCase("LOCAL-POIO")) {
POJOController pojoController = (POJOController) Config.getBean("POJOController");
pojoController.process(serviceRequest);
b
else if (businessServiceType.equalsignoreCase("WebServices")) {

String endpoint = Config.getWebServiceEndpoint(serviceRequest.getServiceName());

WebServicesController ws = (WebServicesController)
Config.getBean("WebServicesController");

ws.setEndpointUrl(endpoint);

ws.process(serviceRequest);

by

5of 21

http://www.javaworld.com/javaworld/jw-10-2004/jw-1004-soa_p.html

else if (businessServiceType.equalsIgnoreCase("EIB")) {
EJBController ejpController = (EJBController) Config.getBean("EJBController");
ejbController.process(serviceRequest);

b
else {
//TODO
System.out.printIn("Unknown types, it's up to you how to handle it in the framework");
b
// That's it, it is your framework, you can add any new ServiceProvider for your next
project.

return null;

by

The above routing if-else block could be refactored into a Command pattern. The conrig Object
provides the Spring and X18p XML configuration lookup. As long as valid data can be retrieved,
it's up to you how to implement the lookup mechanism.

Assuming a POJO manager, TestpoJoBusinessManager, iS implemented, the POJO service provider
controller (pososervicecontroller.java) then looks for the adduser () method from the
TestPOJOBusinessManager and invokes it with reflection (see the code available from Resources).

By introducing three classes (BusinessServiceRequester, ServiceRouter, @Nd ServiceProviderController)
plus one XML configuration file, we have a service-oriented framework as a proof-of-concept.
Here action has no knowledge regarding how a service is implemented. It cares about only input
and output.

The complexity of using various APIs and programming models to integrate various service
providers is shielded from Struts developers working on the Web tier. If xisp-config.xml iS
designed upfront as a service contract, Struts and backend developers can work concurrently by
contract.

Figure 4 shows the architecture's new look.

i
#
s
"

L . Tay e L T
i Sl %’\ R i {m.-....... T A it
[ET [ETmEa i S i
sy | oo B o SO v Ml
A

Figure 4. X18p service-oriented architecture. Click on thumbnail to view full-sized image.

6 of 21

http://www.javaworld.com/javaworld/jw-10-2004/jw-1004-soa_p.html

I summed up the common service provider controllers and implementation strategies in Table 1.
You can easily add more.

Table 1. Implementation strategies for common service provider controllers
Service type Service provider controller Packages

POJO POJOController J2SE
Web services WebServiceController Apache Axis
EIB EJBController J2EE
IMX JMXController M4IX

To give you an example, here's how to implement the webservicecontroller Strategy using Apache

AXis:

WebServiceController Creates an AXis service Object and binds all the parameters to it, invokes it,
and returns. To keep it simple, it supports only type string:

public Object process(ServiceRequest requester) throws Exception {
String ret = null;

try {
Service service = new Service();

Call call = (Call) service.createCall();
String methodName = requester.getOperationName();

call.setTargetEndpointAddress(new java.net.URL(endpointUrl));
call.setOperationName(methodName);

List parameters = (List) requester.getServicelnputs();

/]

int sizeOfParameters = parameters.size();
Object[] args = new Object[sizeOfParameters];

log.debug("REQUESTING Web Service: [" + methodName + "], Inputs ["
+ sizeOfParameters + "]1");

//TODO

boolean isMethodFound = false;

for (inti = 0; i < sizeOfParameters; i++) {
int currentIlndex = i;

call.addParameter("op" + (currentIndex + 1), XMLType.XSD_STRING,
ParameterMode.IN);

args[currentIndex] = parameters.get(currentIndex);
log.debug("SET [" + currentIndex + "], VALUE [" + args[currentIndex] + "]");

b

call.setReturnType(XMLType.XSD_STRING);
ret = (String) call.invoke(args);

log.debug(" Web Service: " + methodName + ", Got result : " + ret);

7 of 21

http://www.javaworld.com/javaworld/jw-10-2004/jw-1004-soa_p.html

catch (java.net.MalformedURLException ue) {
ue.printStackTrace();

)

catch (java.rmi.RemoteException re) {
re.printStackTrace();

¥

catch (javax.xml.rpc.ServiceException e) {
e.printStackTrace();

by

return ret;

¥

As a matter of fact, Axis supports many other types that can be further leveraged. As can be
seen above, provided you have existing knowledge of the programming model and APIs, the
service provider controller should not be hard to implement.

Steps 5 and 6. Meet with user and test

Since the above X18p code is for demonstration purposes only, it is not meant to be used
directly. More work must be done, but how do we find out what requirements are needed? Ask
around. X18p's end-user will let you know. Adding more robust code to X18p is your
responsibility. Once you know the simple architecture, discerning where to address user
concerns shouldn't be difficult, right? Nevertheless, testing is indispensable and critical. X18p
deserves more care.

Other improvement considerations:

e Caching at the service broker layer
® Transaction support with JDOM

DAO

Now, we turn our attention to another common area in J2EE development, DAO, and start
another iteration from Steps 2 to 6.

Step 2. Analyze previous J2EE application architecture

As J2EE developers, we hate writing tedious and repetitious code. Usually we duplicate code by
copying and pasting, which seems a time saver. However, chances are, something should have
been changed after the copy/paste process, but wasn't. The time we saved copying and pasting
is then wasted later while trying to find our error an fixing it. For a large J2EE application,
without a neat framework, we spend a lot of time on the DAO code because of its
creation/read/update/delete (CRUD) operations on numerous domain objects and its repetitious
programming model.

To start analyzing the DAO layer, let's look closer at some JDBC code in DAO:
Stored procedure call
public List getReport(String s) {

Connection connection = null;

CallableStatement proc = null;
ResultSet ret = null;

try {

Context ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup("jdbc/mydatasource");

connection = ds.getConnection();
connection.setAutoCommit(false);

8 of 21

http://www.javaworld.com/javaworld/jw-10-2004/jw-1004-soa_p.html

proc = connection.prepareCall("{ call run_monthly_report_2 (

proc.setString(1, cdNumber);

proc.registerOutParameter(2, Types.VARCHAR);
proc.registerOutParameter(3, Types.VARCHAR);
proc.registerOutParameter(4, Types.VARCHAR);
proc.registerOutParameter(5, Types.VARCHAR);

proc.execute();

ret = proc.getObject(2);

// Print the results
while (rs.next()) {
System.out.printin(rs.getString(1) + "\t" +
rs.getFloat(2) + "\t" +
rs.getDate(3).toString());

by

catch (NamingException ne) {
ne.printStackTrace();
b

catch (SQLException e) {
e.printStackTrace();

b
finally {
try {
if (proc !'= null) {
proc.close();
proc = null;
b
if (connection !'= null && !connection.isClosed()) {
connection.close();
connection = null;
b
b
catch (Exception e) {
b
b
return ret;
b
A standard SQL statement call:
SQL call
try {

String url = "jdbc:oracle:thin:@192.168.0.1:1521:orcl";

Connection conn = DriverManager.getConnection(url,"","")

Statement stmt = conn.createStatement();
ResultSet rs;

rs = stmt.executeQuery("SELECT u.name FROM user WHERE age = ? and sex =?");

while (rs.next()) {

2?27?2727

AN AN AN

))

9 of 21

http://www.javaworld.com/javaworld/jw-10-2004/jw-1004-soa_p.html

String lastName = rs.getString("Lname");
System.out.printin(lastName);
b
conn.close();

} catch (Exception e) {
System.err.printIn("Got an exception! ");
e.printStackTrace();

be

Other third-party integration code follows a programming model similar to the code above, which
opens a connection, gets data from the connection, and processes the data. I picked out some
sample code from webMethods (a B2B server), Livelink (a document management COTS
product), LDAP (standard J2SE Java Naming and Directory Interface API), Documentum (another
document management COTS product), and Hibernate (an O/R (object/relational) mapping

tool):

webMethods B2B server

iimport com.wm.util.Table;

import com.wm.data.*;

import com.wm.util.coder.IDataCodable;

import com.wm.app.b2b.util.GenUtil;

import com.wm.app.b2b.client.Context;

import com.wm.app.b2b.client.ServiceException;

public class WebMethodsCall {
public static void main(String[] args) {
String server = "Fangjian:5555";
Context context = new Context();
String username = "user";
String password = "manage";

try {
context.connect(server, username, password);

b

catch (ServiceException e) {
System.out.printin("\n\tCannot connect to server \"" + server + "\"");
System.exit(0);

b

try {
callBuilnInService(context);

context.disconnect();

b

catch (IOException e) {
System.err.println(e);
e.printStackTrace();

b

catch (ServiceException se) {
System.err.printin(se);
se.printStackTrace();

b

System.exit(0);

b

public static final void callBuilnInService2(Context context) throws IOException,
ServiceException {
IData in = IDataFactory.create();

10 of 21

http://www.javaworld.com/javaworld/jw-10-2004/jw-1004-soa_p.html

IDataCursor idc = in.getCursor();

idc.insertAfter("$dbAlias", "SAMPLEDevp");
idc.insertAfter("$dbSchemaPattern", "SAMPLEDEVP");
idc.insertAfter("$dbTable", "XREFSOMETHING");
idc.insertAfter("$dbAlias", "SAMPLEDevp");
idc.insertAfter("$dbSQL", "select * from xcompanycode");

IData criteria = IDataFactory.create();
idc.insertAfter("$data", criteria);
idc.destroy();

IData outputRecord = context.invoke(in, "servername", "inputRecord");
IDataCursor odc = outputRecord.getCursor();

if (odc.next("results")) {
com.wm.util.Table t = (com.wm.util.Table) odc.getValue();

IData ii = t.getIData();
GenUtil.printRec(ii, "Output Table's IData");

IData i = t.getRow(0);
IDataCursor idc3 = i.getCursor();

if (idc3.first("abc")) {
String iata = (String) idc3.getValue();
System.out.printin(">>> OK, got data : >> " + iata);
b
b
else {
System.out.printin(">>> OK, resutls not found >>> \n");
b

if (odc.next("$dbMessage")) {
String s = (String) odc.getValue();
System.out.printIn(">>> OK, dbmssage >> " + s);

by

else {
System.out.printIn(">>> OK, dbmssage not found >>");
)

by

b
LDAP/JINDI API call

import java.util.*;
import javax.naming.*;
import javax.naming.directory.*;

public class LDAPSearch {
public static String INITCTX = "com.sun.jndi.ldap.LdapCtxFactory";
public static String MY_HOST = "ldap://server:389";
public static String MGR_DN = "cn=abc,cn=users, dc=companyl,dc=orgl";
public static String MGR_PW = "password";
public static String MY_SEARCHBASE = "dc=companyl,dc=companyl”;

public static void main(String args[]) {

search("abc");

¥

11 of 21

http://www.javaworld.com/javaworld/jw-10-2004/jw-1004-soa_p.html

public static List search(String filter) {

filter = "cn="+filter;

boolean isFound=false;

try {
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY, INITCTX);
env.put(Context.PROVIDER_URL, MY_HOST);
env.put(Context.SECURITY_AUTHENTICATION, "simple");
env.put(Context.SECURITY_PRINCIPAL, MGR_DN);
env.put(Context.SECURITY_CREDENTIALS, MGR_PW);

DirContext ctx = new InitialDirContext(env);

SearchControls constraints = new SearchControls();
constraints.setSearchScope(SearchControls.SUBTREE_SCOPE);
NamingEnumeration results = ctx.search(MY_SEARCHBASE, filter, constraints);
List returnList = new ArraylList();

while (results !'= null && results.hasMore()) {
SearchResult sr = (SearchResult) results.next();
String dn = sr.getName();
System.out.printIn("Distinguished Name is " + dn);

Attributes attrs = sr.getAttributes();

for (NamingEnumeration ne = attrs.getAll(); ne.hasMoreElements();) {
Attribute attr = (Attribute) ne.next();
String attrID = attr.getID();

returnList.add(attrID);

System.out.printin(attrID + ":");

for (Enumeration vals = attr.getAll(); vals.hasMoreElements();) {
System.out.printin("\t" + vals.nextElement());

b

b
} // End while loop displaying list of attributes

return returnList;
}catch (Exception e) {
e.printStackTrace();
System.exit(1);
b

return null;

¥
b

Livelink call

import com.opentext.api.*;
import java.io.*;

import java.util.*;

public class LiveLinkDemo {

public static void main(String[] args) {

12 of 21

http://www.javaworld.com/javaworld/jw-10-2004/jw-1004-soa_p.html

try {
LLSession session;
int volumelD;
int nodelD;

LAPI_DOCUMENTS documents;
LLValue value = (new LLValue()).setAssocNotSet();

LLValue infol = (new LLValue()).setAssocNotSet();
LLValue info2 = (new LLValue()).setAssocNotSet();

//Initialize session

session = new LLSession("fangjian", 2099, "livelink", "Admin", "

documents = new LAPI_DOCUMENTS(session);

if (documents.AccessEnterpriseWS(value) == 0) {
volumelD = value.toInteger("VolumelD");
nodelD = value.toInteger("ID");

LLValue value = (new LLValue()).setAssocNotSet();

password");

documents.ListObjects(vID, nID, "", "", documents.PERM_SEE, value);

LLOutputStream stream = new LLOutputStream(System.out);

LLValueEnumeration rows = value.enumerateValues();

while (rows.hasMoreElements()) {
LLNameEnumeration columns = value.enumerateNames();

LLValueEnumeration cols = rows.nextValue().enumerateValues();

while (columns.hasMoreElements() && cols.hasMoreElements()) {

stream.writeString(columns.nextName() + "-->");
stream.writeValue(cols.nextValue());
stream.writeString("\n");

b

int childvID = value.toInteger(i, "volumeID");
int childID = value.toInteger(i, "ID");

b

b

b
catch (Throwable e) {

System.err.printin(e.getMessage());
e.printStackTrace(System.err);

¥
¥
b

Documentum call

import com.documentum.fc.client.*;
import com.documentum.fc.common.*;
import com.documentum.operations.IDfFile;

13 of 21

http://www.javaworld.com/javaworld/jw-10-2004/jw-1004-soa_p.html

import com.documentum.operations.IDfImportNode;
import com.documentum.operations.IDfImportOperation;
import com.documentum.com.*;

public class DocumentumSearch {

be

public List executeSearchL(String dqlstring) {

¥

IDfSession session = null;
IDfCollection idfCollection = null;

DfClientX clientx = new DfClientX();
IDfQuery dqlQuery = clientx.getQuery();

IDfSessionManager mgr = clientx.getLocalClient().newSessionManager();
IDfLoginInfo loginInfoObj = clientx.getLoginInfo();
loginInfoObj.setUser("john");

loginInfoObj.setPassword("password");

mgr.setldentity("dobcasename", loginInfoObj);

try {

session = mgr.getSession("dobcasename");

dqlQuery.setDQL(dqlstring);

idfCollection = dqlQuery.execute(session, IDfQuery.READ_QUERY);
List ret = new ArrayList();

while (idfCollection.next() == true) {
for (inti = 0; i < collection.getAttrCount(); i++) {
IDfAttr attr = collection.getAttr(i);

ret.add(collection.getString("r_object_id"));

b
b

return ret;

b
catch (DfException ed) {
ed.printStackTrace();

b
catch (Throwable e) {

e.printStackTrace();

b
finally {
if (idfCollection !'= null) {
try {
idfCollection.close();
b
catch (DfException el) {
el.printStackTrace();
b
b

mgr.release(session);

by

14 of 21

http://www.javaworld.com/javaworld/jw-10-2004/jw-1004-soa_p.html

Hibernate

import net.sf.hibernate.*;
import java.util.*;

public class HibernateDemo {
net.sf.hibernate.Session session = null;

public HibernateDemo() {
¥

public void someMethod() {

try {
session = HibernateUtil.currentSession();
Transaction tx = session.beginTransaction();

MyObject object = new MyObject();
object.setter1("abc");

session.save(object);
tx.commit();

HibernateUtil.closeSession();

)
catch (Throwable e) {

e.printStackTrace();
b
b

public List getObjectList() {

List ret = new ArrayList();

try {
session = HibernateUtil.currentSession();

Query query = session.createQuery("select a from Acount as a");

for (Iterator it = query.iterate(); it.hasNext();) {
Account account = (Account) it.next();
ret.add(account);

b

s
catch (HibernateException hbe) {
hbe.printStackTrace();
¥
return ret;
¥
b

What do these examples have in common? They follow a strikingly similar pattern. First, a
connection object is created. Then, input parameters are passed in to execute an operation.
Lastly, the raw return data is processed and a more generic domain object or Java collection
object returns to the caller. They also have typical try/catch blocks. As an O/R mapping tool,
Hibernate reads/writes Java objects directly and executes an HQL (Hibernate Query Language)
statement.

Due to the nature of CRUD at the DAO layer, we could face numerous CRUD operations in many
DAO objects depending on the relation model. For instance, a financial application might have

15 of 21

http://www.javaworld.com/javaworld/jw-10-2004/jw-1004-soa_p.html

AccountDAO, QuoteDao, and pricingbao. An enterprise content management application might have
DocumentDAO, FolderDao, and reportpao— NOt to mention commonly used userbro, Groupbro, RoleDao,
and legacy stored procedures.

The above code clearly shows that a more desirable approach would extract the common code
such as the open/close connection, parameter binding, and try/catch block to a single place in
X18p. We leave the processing of raw return data to application code as it contains specific logic.
We can provide a Java interface (contract) for that step.

Step 3. Compare alternative frameworks
Keeping in mind that open source frameworks are the basis of our inspiration, I found three
interesting items:

e A JDBC framework outlined by Ryan Daigle in JavaWorld
® Spring's soecTemplate and stored procedure
® Apache Cocoon's SQLProcessor

I quickly analyze these technologies in Table 2.

Table 2. Comparison of alternative frameworks

Source Pros Cons

Daigle’s JDBC Very easy to follow Not declarative

framework

Spring Supports SQL and Not declarative, a little complicated

stored procedures

Limited to SQL statement;
Declarative unfortunately deprecated and no
longer supported

Apache Cocoon's
SQLProcessor

Due to the fact these three technologies are from disparate sources, they either lack a
declarative approach or fail to consistently deal with the programming model that opens a server
connection, uses it to get data, and processes data. However, we can leverage their concepts in
developing a DAO support module for X18p.

Daigle's JDBC framework lays good foundation for us to extend. As you will see, the X18p
JdbcSQLProcessor resembles that framework's SQLProcessor.

Step 4. Develop and refactor

Now we add some handy framework code to X18p that helps most backend developers. We can
create storedProcedureProcessor, SQLStatementProcessor, HibernateProcessor, OF DQLProcessor @S the
single place to hold common code for X18p. With the processors and handlers implemented, we
call a stored procedure like this:

List result = null;

StoredProcedureProcessor p = JdbcProcessor.getStoredProcedureProcessor();
List inputList = new ArrayList();

inputList.add("123");

try

{
result = p.execute("get_complex_time_consuming_report_calucation", inputList);
catch(Throwable e)

{
e.printStackTrace();

16 of 21

http://www.javaworld.com/javaworld/jw-10-2004/jw-1004-soa_p.html

be

return result;

be

The storedprocedureprocessor in X18p needs to be coded only once to complete the following
tasks:

1. Automatically find stored procedure information from the configuration file (could be
Xl8p—config.xml) by ID.

2. Get connection from configuration's datasource and create a callable statement and related
object.

3. Take the input list from the caller, bind the input parameters, and register the output
parameters by the configuration information.

4. Execute the procedure in a try/catch block.

5. Get a resultsetMaprandler, Which should be implemented by the application code, and use it
to process the returned output value, which could be a string, humber, date, or cursor.
They are stored as a map.

6. Close all the resources in the end.

Figure 5 illustrates the referenced xi1sp-config.xm1 S€egment.

Figure S. Stored procedure mapping configuration. Click on thumbnail to view full-sized image.

In addition to the stored procedure call, a SQL statement call can also be simplified. After
JdbcSQLProcessor IS implemented, calling a SQL statement becomes similar to calling a stored
procedure:

JdbcSQLProcessor p = JdbcProcessor.getSqlProcessor();

List inputList = new ArrayList();
inputList.add(userName);

try {
p.executeUpdate("select_user", inputList);

b
catch (Throwable e) {

e.printStackTrace();

17 of 21

http://www.javaworld.com/javaworld/jw-10-2004/jw-1004-soa_p.html

be

JdbcsoLProcessor iN X18p is coded to do slightly different tasks:

1.

2.

6.

Automatically find SQL statement information from the configuration file by ID.

Get connection from configuration's datasource and create a statement and related object.

. Take the input list from the caller and bind the input parameters to the question mark (2)

by the configuration information.
Execute the statement in a try/catch block.

Get resultsetnandler, Which should be implemented by the application code, and use it to
process the returned data, which is a cursor. It is stored as a result set.

Close all the resources at the end.

Figure 6 illustrates the referenced x1sp-config.xm1 S€egment.

o ="catasouroe” > jobr ferpcyisscar o< (proper
st iz "amiect_LRr® reay -ancker = Sy fappication cen | isscRes iSabisncler” me oo proces”

SELECT urams FROb wmar WHERE 209 = 7 and die =

Figure 6. SQL statements mapping configuration. Click on thumbnail to view full-sized image.

If we use Hibernate, we may also implement sibernateprocessor.java, Which maps HQL in
X18p-config.xml. HibernateProcessor IS consistent with gdbcsorprocessor and storedprocedureProcessor
in terms of XML mapping.

HibernateProcessor Can be coded to do the following tasks:

1.

2.

7.

Automatically find HQL statement information from the configuration file by ID.

Get Hibernate session from configuration's datasource and create a statement and related
object.

. Take the input list from the caller.

With the Hibernate statement type, either bind an input parameter to a Hibernate method,
such as save (), or bind parameter to - in the HQL query.

. Execute the statement in a try/catch block.

Get resultnandiler, Which should be implemented by the application code, and use it to
process the returned object which could be guery or any name you prefer.

Close all the Hibernate sessions at the end.

Figure 7 illustrates the referenced xi18p-config.xml Segment for sibernateProcessor.

18 of 21

http://www.javaworld.com/javaworld/jw-10-2004/jw-1004-soa_p.html

[
Nl i e et e i C

vl

Figure 7. Hibernate statement mapping configuration. Click on thumbnail to view full-sized image.

In Figure 7, other than the generic HQL mapping, one item worth noting is the transaction
control configuration that nibernaterrocessor uses to simplify the transaction code. If a transaction
sequence can be predetermined, which normally is the case, we can use xi18p-config.xm1 to help
Hibernatebrocessor dO the transaction work. We then only write the following simple code for a
transaction that requires both o1 to be saved and o2 to be saved or updated:

List result = null;
HibernateProcessor p = getHibernateProcessor();

List inputList = new ArrayList();

MyObject 01= new MyObject();
MyObject 02= new MyObject();
inputList.add(o1);
inputList.add(02);

try
{
result = p.execute("transactions_1", inputList);
b
catch(Throwable e)
{
e.printStackTrace();
b
return result;
b

The final object model, as shown in Figure 8, is simple and straightforward.

Figure 8. DAO framework architecture. Click on thumbnail to view full-sized image.

Next, as you have probably already discovered, implementing other processors and handlers on

19 of 21

http://www.javaworld.com/javaworld/jw-10-2004/jw-1004-soa_p.html

your own is not difficult. This article's code is used only for illustration purposes and is not
complete for deployment. The key point is to roll your own.

Steps 5 and 6. Meet with user and test
Complete the final steps the same way we did previously.

Conclusion

In this article, you have learned a service-oriented approach for decoupling layers. Also, you
discovered many ways to reduce DAO code. However, Java technology continues to evolve. One
thing is for certain, there are always ways to greatly improve our productivity.

I would thank Mike Coene, Paul Baliff, Brianna Broderick, Len Escanilla, Hiep Vu, Jacob Chu, and
Dave Han for their encouragements and inspirations. I also thank Charlie Liu for reviewing this
article.

About the author

Fangjian Wu, a technical architect with Booz Allen Hamilton, a global consulting firm, has been
developing J2EE applications during the last five years. He is currently architecting Documentum
and electronic-submission J2EE applications. He has a BS in microelectronics and an MS in
computer information systems. He is based in Rockville, Maryland.

Resources

® Download the source code that accompanies this article:
http://www.javaworld.com/javaworld/jw-10-2004/soa/jw-1004-soa.zip

e Struts:
http://struts.apache.org/

® Service Locator pattern:
http://java.sun.com/blueprints/corej2eepatterns/Patterns/ServiceLocator.html

® Hibernate:
http://www.hibernate.org/

e "Eliminate JDBC Overhead," Ryan Daigle (JavaWorld, May 2002):
http://www.javaworld.com/javaworld/jw-05-2002/jw-0524-sqgl.html

® Spring Framework:
http://www.springframework.org/

® Axis:
http://ws.apache.org/axis/

e JDBC technology:
http://java.sun.com/products/jdbc/

e Documentum, an enterprise content management technology:
http://www.documentum.com/

e webMethods, a B2B integration server:
http://www.WebMethods.com/

® Livelink, a knowledge management system:
http://www.OpenText.com/

e Cocoon:
http://cocoon.apache.org/

e For an introduction to Axis, read "Axis : The Next Generation of Apache SOAP," Tarak Modi
(JavaWorld, January 2002):
http://www.javaworld.com/javaworld/jw-01-2002/jw-0125-axis.html

® JavaWorld has published numerous articles on Struts, including the following:

o "Struts Best Practices," Puneet Agarwal (September 2004)

o0 "Jump the Hurdles of Struts Development," Michael Coen and Amarnath Nanduri
(April 2003)

O "Boost Struts with XSLT and XML," Julien Mercay and Gilbert Bouzeid (February
2002)

® For more articles on J2EE development, browse the Java 2 Platform, Enterprise Edition
(J2EE) section of JavaWorld's Topical Index:

20 of 21

http://www.javaworld.com/javaworld/jw-10-2004/jw-1004-soa_p.html

http://www.javaworld.com/channel_content/jw-j2ee-index.shtml?

® For more articles on JDBC, browse the Java Database Connectivity (JDBC) section of
JavaWorld's Topical Index:
http://www.javaworld.com/channel_content/jw-jdbc-index.shtml

mworld Advertisement: Support JavaWorld, click here!

Foaiing Tnmaddza™ B

HOME | FEATURED TUTORIALS | COLUMNS | NEWS & REVIEWS | FORUM | JW RESOURCES | ABOUT JW |
FEEDBACK

Copyright © 2004 JavaWorld.com, an IDG company

21 of 21

